ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
W. L. Filippone, S. Woolf
Nuclear Science and Engineering | Volume 100 | Number 3 | November 1988 | Pages 201-208
Technical Paper | doi.org/10.13182/NSE88-A29032
Articles are hosted by Taylor and Francis Online.
An angular redistribution function for electron scattering based on Goudsmit-Saunderson theory has been implemented in a Monte Carlo electron transport code in the form of a scattering matrix that we term SMART (simulating many accumulative Rutherford trajectories). These matrices were originally developed for use with discrete ordinates electron transport codes. An essential characteristic of this scattering theory is a large effective mean-free-path for electrons, much larger in fact than the true single collision mean-free-path. When this theory is applied to single collision analog Monte Carlo calculations, excellent results are obtained for the principal quantities of interest, transmission and reflection spectra, and energy deposition. A derivation of the SMART scattering matrix is presented, using the method of weighted residuals to obtain the discretized form of the Spencer-Lewis equation for electron transport. Results of Monte Carlo calculations for electron transport in aluminum slabs for both beam source and isotropic source configurations are given. These results are compared with similar benchmark calculations made with the TIGER code series.