ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
W. L. Filippone, S. Woolf
Nuclear Science and Engineering | Volume 100 | Number 3 | November 1988 | Pages 201-208
Technical Paper | doi.org/10.13182/NSE88-A29032
Articles are hosted by Taylor and Francis Online.
An angular redistribution function for electron scattering based on Goudsmit-Saunderson theory has been implemented in a Monte Carlo electron transport code in the form of a scattering matrix that we term SMART (simulating many accumulative Rutherford trajectories). These matrices were originally developed for use with discrete ordinates electron transport codes. An essential characteristic of this scattering theory is a large effective mean-free-path for electrons, much larger in fact than the true single collision mean-free-path. When this theory is applied to single collision analog Monte Carlo calculations, excellent results are obtained for the principal quantities of interest, transmission and reflection spectra, and energy deposition. A derivation of the SMART scattering matrix is presented, using the method of weighted residuals to obtain the discretized form of the Spencer-Lewis equation for electron transport. Results of Monte Carlo calculations for electron transport in aluminum slabs for both beam source and isotropic source configurations are given. These results are compared with similar benchmark calculations made with the TIGER code series.