ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Y. Y. Azmy
Nuclear Science and Engineering | Volume 100 | Number 3 | November 1988 | Pages 190-200
Technical Paper | doi.org/10.13182/NSE88-5
Articles are hosted by Taylor and Francis Online.
Two previously derived approximations to the linear-linear nodal transport method, the linear-nodal (LN) and the linear-linear (LL) methods, are reexamined, together with a new approximation, the bilinear (BL) method, that takes into account the bilinear nodal flux moment. The three methods differ in the degree of analyticity retained in the final discrete variable equations; however, they all possess the very high accuracy characteristic of nodal methods. Unlike previous work, the final equations are manipulated and cast in the form of the classical weighted diamond-difference (WDD) equations (not just a WDD algorithm). This makes them simple to implement in a computer code, especially for those users who have experience with WDD algorithms. Other algorithms, such as the nodal algorithm, also can be used to solve the WDD-form equations. A computer program that solves two-dimensional transport problems using the LN, LL, or the BL method is used to solve three test problems. The results are used to confirm our algebraic manipulations of the nodal equations and also to compare the performance of the three methods from the computational, as well as the theoretical, point of view. The three methods are found to have comparable accuracies for the problems studied, especially on meshes that are sufficiently fine.