ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Y. Y. Azmy
Nuclear Science and Engineering | Volume 100 | Number 3 | November 1988 | Pages 190-200
Technical Paper | doi.org/10.13182/NSE88-5
Articles are hosted by Taylor and Francis Online.
Two previously derived approximations to the linear-linear nodal transport method, the linear-nodal (LN) and the linear-linear (LL) methods, are reexamined, together with a new approximation, the bilinear (BL) method, that takes into account the bilinear nodal flux moment. The three methods differ in the degree of analyticity retained in the final discrete variable equations; however, they all possess the very high accuracy characteristic of nodal methods. Unlike previous work, the final equations are manipulated and cast in the form of the classical weighted diamond-difference (WDD) equations (not just a WDD algorithm). This makes them simple to implement in a computer code, especially for those users who have experience with WDD algorithms. Other algorithms, such as the nodal algorithm, also can be used to solve the WDD-form equations. A computer program that solves two-dimensional transport problems using the LN, LL, or the BL method is used to solve three test problems. The results are used to confirm our algebraic manipulations of the nodal equations and also to compare the performance of the three methods from the computational, as well as the theoretical, point of view. The three methods are found to have comparable accuracies for the problems studied, especially on meshes that are sufficiently fine.