ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Y. Y. Azmy
Nuclear Science and Engineering | Volume 100 | Number 3 | November 1988 | Pages 190-200
Technical Paper | doi.org/10.13182/NSE88-5
Articles are hosted by Taylor and Francis Online.
Two previously derived approximations to the linear-linear nodal transport method, the linear-nodal (LN) and the linear-linear (LL) methods, are reexamined, together with a new approximation, the bilinear (BL) method, that takes into account the bilinear nodal flux moment. The three methods differ in the degree of analyticity retained in the final discrete variable equations; however, they all possess the very high accuracy characteristic of nodal methods. Unlike previous work, the final equations are manipulated and cast in the form of the classical weighted diamond-difference (WDD) equations (not just a WDD algorithm). This makes them simple to implement in a computer code, especially for those users who have experience with WDD algorithms. Other algorithms, such as the nodal algorithm, also can be used to solve the WDD-form equations. A computer program that solves two-dimensional transport problems using the LN, LL, or the BL method is used to solve three test problems. The results are used to confirm our algebraic manipulations of the nodal equations and also to compare the performance of the three methods from the computational, as well as the theoretical, point of view. The three methods are found to have comparable accuracies for the problems studied, especially on meshes that are sufficiently fine.