ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Dimitris Valougeorgis
Nuclear Science and Engineering | Volume 100 | Number 2 | October 1988 | Pages 142-148
Technical Paper | doi.org/10.13182/NSE88-A29022
Articles are hosted by Taylor and Francis Online.
A study on the development of acceleration equations for boundary cells and the associated boundary conditions for the diffusion synthetic acceleration method of neutron transport problems in x-y geometry is described. Alcouffe’s algebraic manipulation of the P, equations resulting in a single diffusion equation is modified to obtain explicit acceleration equations for the boundary cells. To accomplish this, the discretization in space is performed according to the ordinary box-centered method. The resulting synthetic computation scheme is linear in its differenced form. The boundary cell difference equations are derived in a manner that exactly parallels the discretization of the diffusion equation for interior mesh cells and that of the transport equation. The importance of these equations in improving overall efficiency without sacrificing stability is discussed, as is the optimum choice of the boundary conditions associated with these equations.