ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
No impact from Savannah River radioactive wasps
The news is abuzz with recent news stories about four radioactive wasp nests found at the Department of Energy’s Savannah River Site in South Carolina. The site has been undergoing cleanup operations since the 1990s related to the production of plutonium and tritium for defense purposes during the Cold War. Cleanup activities are expected to continue into the 2060s.
C. Y. Fu
Nuclear Science and Engineering | Volume 100 | Number 1 | September 1988 | Pages 61-76
Technical Paper | doi.org/10.13182/NSE88-A29015
Articles are hosted by Taylor and Francis Online.
A simplified method for approximating precompound nuclear reaction effects in Hauser-Feshbach codes for the calculation of double differential (n, xn) cross sections is presented. The method is developed from an existing quantum mechanical formula of unified compound and precompound reaction theories. The compound part of the unified formula is made identical to that of Hauser and Feshbach by applying the unified level-density formulas derived previously for the two theories. The precompound part, much more complicated than the compound part, is simplified and globally parameterized for practical purposes. Calculated double differential (n, xn) cross sections at 14 and 26 MeV for iron, niobium, and bismuth are shown to be in good agreement with the available experimental data. The method at various stages of development has been applied with success to the generation of evaluated files of double differential (n, xn) cross sections from 5 to 20 MeV for the major isotopes of chromium, manganese, iron, nickel, and copper.