ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
C. Y. Fu
Nuclear Science and Engineering | Volume 100 | Number 1 | September 1988 | Pages 61-76
Technical Paper | doi.org/10.13182/NSE88-A29015
Articles are hosted by Taylor and Francis Online.
A simplified method for approximating precompound nuclear reaction effects in Hauser-Feshbach codes for the calculation of double differential (n, xn) cross sections is presented. The method is developed from an existing quantum mechanical formula of unified compound and precompound reaction theories. The compound part of the unified formula is made identical to that of Hauser and Feshbach by applying the unified level-density formulas derived previously for the two theories. The precompound part, much more complicated than the compound part, is simplified and globally parameterized for practical purposes. Calculated double differential (n, xn) cross sections at 14 and 26 MeV for iron, niobium, and bismuth are shown to be in good agreement with the available experimental data. The method at various stages of development has been applied with success to the generation of evaluated files of double differential (n, xn) cross sections from 5 to 20 MeV for the major isotopes of chromium, manganese, iron, nickel, and copper.