ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yukio Sakamoto, Shun-ichi Tanaka, Yoshiko Harima
Nuclear Science and Engineering | Volume 100 | Number 1 | September 1988 | Pages 33-42
Technical Paper | doi.org/10.13182/NSE88-A29012
Articles are hosted by Taylor and Francis Online.
The values of buildup factors for a specific energy above K edges and penetration distance vary smoothly with respect to atomic number. An interpolation of buildup factors for an arbitrary elemental material is examined using geometric-progression (G-P) parameters for an equivalent atomic number. The G-P parameters are data fitted to the proposed American National Standard buildup factor data compilation of 17 elements from beryllium to molybdenum and are calculated by the moments method. The data for iron, molybdenum, tin, lanthanum, gadolinium, tungsten, lead, and uranium, including bremsstrahlung and fluorescence, are calculated by the PALLAS code. Various tests over a wide range of atomic numbers confirm that values of the buildup factors generated by interpolated G-P parameters can reproduce the basic data calculated directly over the full range of energy with an accuracy within a few percent. The values of equivalent atomic number for mixture materials, such as water, air, concrete, and lead glass of 4.36 density, are determined from a ratio of scattering cross section to the total attenuation coefficient. The buildup factors for these materials calculated using the G-P parameters, interpolated by the equivalent atomic number, are in good agreement with the basic data, although a deviation is observed above 3 MeV for the buildup factors for lead glass.