ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
T. K. Larson, R. A. Dimenna
Nuclear Science and Engineering | Volume 100 | Number 1 | September 1988 | Pages 21-32
Technical Paper | doi.org/10.13182/NSE88-A29011
Articles are hosted by Taylor and Francis Online.
Preservation of similitude criteria in current mathematical models used for transient analysis of thermal-hydraulic systems is discussed. Input models for the RELAP5 computer code were developed at the Idaho National Engineering Laboratory for two simple hypothetical natural circulation systems consisting of a closed loop containing energy generation, energy removal, and flow resistance. The two models differed significantly in geometric scale size. A reference model had components and operating conditions in a range similar to those found in typical nuclear steam supply systems; a scaled model, geometrically much smaller than the reference model, had components that were sized from the reference model using similarity criteria presented in the literature. Steady-state and transient single- and two-phase natural circulation calculations were conducted using both models to determine if the model-to-model relationships in time, pressure drop, and velocity scales were in accordance with the similitude criteria. Results indicate that, while the code predicts the expected fundamental effects of geometric scale, there are noteworthy differences in the details of calculations.