ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. B. Vilim, T. Y. C. Wei, F. E. Dunn
Nuclear Science and Engineering | Volume 99 | Number 3 | July 1988 | Pages 183-196
Technical Paper | doi.org/10.13182/NSE88-4
Articles are hosted by Taylor and Francis Online.
A generalized control system modeling capability has been developed for the SASSYS-1 liquid-metal reactor (LMR) system code, significantly extending the simulation capabilities for LMR systems. An important element is the identification of a general equation form that encompasses all control equations encountered in practical applications. The modeling capability is based on steady-state and transient solution techniques suited to the characteristics of this form. As for the user, his control equations are entered in block diagram form as a collection of individual dynamic, function, logic, and table blocks. Constructing plant control equations in this manner is analogous to setting up an analog computer for simulation. The capability is thus sufficiently general for use in modeling a wide variety of control systems and protection systems.