ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
L. W. Deitrich, T. J. Connolly
Nuclear Science and Engineering | Volume 50 | Number 3 | March 1973 | Pages 273-282
Technical Paper | doi.org/10.13182/NSE73-A28980
Articles are hosted by Taylor and Francis Online.
This paper reports a study of bubble nucleation by fission fragments in superheated water. The experimental work was conducted using a small bubble chamber especially built for the program. The minimum superheat necessary for nucleation of visible bubbles by fission fragments (the threshold) was measured at temperatures between 380 and 440°F.Predictions of the threshold are based on comparison of the energy and linear energy transfer (LET) of fission fragments with the values required for bubble nucleation. Because of the variation in fission-fragment energy, the comparison is made on the basis of the median, 80’th percentile, and maximum energy and LET of the fragments present in the experiment.The data indicate that the LET comparison is the appropriate basis for prediction of the threshold. Using an empirically adjusted value of the LET required for nucleation, the calculated threshold agrees reasonably well with the data but becomes increasingly discrepant with increasing temperature. Reasons for deviation of the data from predictions are discussed, but a definitive determination cannot be made on the basis of the available data.