ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
L. Green, J. A. Mitchell, N. M. Steen
Nuclear Science and Engineering | Volume 50 | Number 3 | March 1973 | Pages 257-272
Technical Paper | doi.org/10.13182/NSE73-A28979
Articles are hosted by Taylor and Francis Online.
The 252Cf prompt-fission-neutron spectrum has been measured by time-of-flight techniques over the energy range 0.5 to 13 MeV. Significant analytical and experimental improvements over earlier measurements were employed. The data were simultaneously analyzed with the angular pattern data of Bowman et al., using a model which includes anisotropy of emission in the neutron fragment coordinate system and a stationary source. Based on this analysis, the mean energy is found to be 2.105 ± 0.014 MeV. It is also concluded that the fragment emission spectra are highly anisotropic. The anisotropy is dictated by the data presented here, rather than by angular patterns. The existence of the stationary source is supported by both data types. A Maxwellian fit to the data provided a temperature parameter of 1.406 ± 0.015 MeV. While the spectrum clearly deviates from a Maxwellian, this simple representation was found to be adequate to ±5% from 0.7 to 8.0 MeV.