ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
J. E. Cahalan, K. O. Ott
Nuclear Science and Engineering | Volume 50 | Number 3 | March 1973 | Pages 208-215
Technical Paper | doi.org/10.13182/NSE73-A28973
Articles are hosted by Taylor and Francis Online.
The delayed neutron precursor decay curves which result from a pulse of fissions of the isotopes 233 U, 235U, 238U, 232Th, 239Pu, 240Pu, 241Pu, and242Pu are consistently fit to a single set of six isotope-independent decay constants. When delayed neutron yields based on a single set of group decay constants are employed in reactor transient analysis, it becomes possible to introduce macroscopic precursor production cross sections for each of the delayed neutron groups. The newly fitted data are tested by the analysis of a typical fast reactor transient; the analysis shows that the utilization of the new data in comparison to the use of original data results in an insignificantly small deviation, while permitting a considerable reduction of calculational effort. The new technique developed for the fitting is shown to preserve important integral kinetics parameters. The fitting technique also allows the recasting of original five group data into the more conventional six group structure.Recent measurements on the energy dependence of delayed neutron yields and emission spectra are briefly discussed. The lack of energy dependence of the total delayed neutron yield in the range of interest for fast reactor analysis leads to a modification of the definition of the effective delayed neutron fraction.