ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
R. S. Booth, R. H. Hartley, R. B. Perez
Nuclear Science and Engineering | Volume 28 | Number 3 | June 1967 | Pages 404-414
Technical Paper | doi.org/10.13182/NSE67-A28955
Articles are hosted by Taylor and Francis Online.
A technique is presented for conducting neutron-wave experiments in thermal-neutron systems using either a sinusoidally modulated or a pulsed source of thermal neutrons. A neutron source suitable for this experiment is described, data-accumulation criteria are presented, and the electrical systems used for collection are discussed. A specific experiment with graphite is reported and the discussion of data analysis is carried through the experimental determination of this system's dispersion law. It is found that, in general, a pulsed source of thermal neutrons is more suitable for neutron-wave experimentation than a sinusoidally modulated source. Confirmation is given to the theoretical prediction that diffusion and thermalization parameters can be measured by this technique over a relatively wide range of frequency without significant higher space- and energy-mode contamination. The values we obtained for the diffusion and thermalization parameters for graphite of density 1.60 g/cm3 were α0 ± 91. ± 1 sec−1, D0 = (2.16 ± 0.01) × 105 (cm2 sec−1), C0 = (39. ± 2) × 105 (cm4 sec−1), and F0 = (12. ± 2) × 107 (cm6 sec−1).