ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NextGen MURR Working Group established in Missouri
The University of Missouri’s Board of Curators has created the NextGen MURR Working Group to serve as a strategic advisory body for the development of the NextGen MURR (University of Missouri Research Reactor).
R. S. Booth, R. H. Hartley, R. B. Perez
Nuclear Science and Engineering | Volume 28 | Number 3 | June 1967 | Pages 404-414
Technical Paper | doi.org/10.13182/NSE67-A28955
Articles are hosted by Taylor and Francis Online.
A technique is presented for conducting neutron-wave experiments in thermal-neutron systems using either a sinusoidally modulated or a pulsed source of thermal neutrons. A neutron source suitable for this experiment is described, data-accumulation criteria are presented, and the electrical systems used for collection are discussed. A specific experiment with graphite is reported and the discussion of data analysis is carried through the experimental determination of this system's dispersion law. It is found that, in general, a pulsed source of thermal neutrons is more suitable for neutron-wave experimentation than a sinusoidally modulated source. Confirmation is given to the theoretical prediction that diffusion and thermalization parameters can be measured by this technique over a relatively wide range of frequency without significant higher space- and energy-mode contamination. The values we obtained for the diffusion and thermalization parameters for graphite of density 1.60 g/cm3 were α0 ± 91. ± 1 sec−1, D0 = (2.16 ± 0.01) × 105 (cm2 sec−1), C0 = (39. ± 2) × 105 (cm4 sec−1), and F0 = (12. ± 2) × 107 (cm6 sec−1).