ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Work advances on X-energy’s TRISO fuel fabrication facility
Small modular reactor developer X-energy, together with its fuel-developing subsidiary TRISO-X, has selected Clark Construction Group to finish the building construction phase of its advanced nuclear fuel fabrication facility, known as TX-1, in Oak Ridge, Tenn. It will be the first of two Oak Ridge facilities built to manufacture the company’s TRISO fuel for use in its Xe-100 SMR. The initial deployment of the Xe-100 will be at Dow Chemical Company’s UCC Seadrift Operations manufacturing site on Texas’s Gulf Coast.
Edgar L. Compere and Jouko E. Savolainen
Nuclear Science and Engineering | Volume 28 | Number 3 | June 1967 | Pages 325-337
Technical Paper | doi.org/10.13182/NSE67-A28946
Articles are hosted by Taylor and Francis Online.
The solubility of hydrogen in liquid alkali metals useful as nuclear reactor coolants varies significantly with pressure and temperature. The solubility of hydrogen in eutectic sodium-potassium mixture (NaK-78) was determined at six temperatures from 300 to 704°C and at pressures below one atmosphere. For unsaturated solutions, the solubility depended on the square root of the hydrogen pressure and varied only slightly with temperature. At temperatures of 300 to 400°C, enough hydrogen could be dissolved at pressures below one atmosphere to result in precipitation of a metal hydride. Precipitation-decomposition pressures were consistent with the literature. The addition to NaK-78 of 1 to 4 at.% lithium considerably diminished the hydrogen activity and resulted in precipitation at lower hydrogen pressure. A mass action model is postulated to explain the phenomena. It is suggested that in liquid-alkali-metal mixtures, dissolved hydrogen exists largely in the form of undissociated metal-hydride molecules or ion pairs, with the different metals combining with the hydrogen in proportion to their concentration and their affinity for hydrogen.