ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
Edgar L. Compere and Jouko E. Savolainen
Nuclear Science and Engineering | Volume 28 | Number 3 | June 1967 | Pages 325-337
Technical Paper | doi.org/10.13182/NSE67-A28946
Articles are hosted by Taylor and Francis Online.
The solubility of hydrogen in liquid alkali metals useful as nuclear reactor coolants varies significantly with pressure and temperature. The solubility of hydrogen in eutectic sodium-potassium mixture (NaK-78) was determined at six temperatures from 300 to 704°C and at pressures below one atmosphere. For unsaturated solutions, the solubility depended on the square root of the hydrogen pressure and varied only slightly with temperature. At temperatures of 300 to 400°C, enough hydrogen could be dissolved at pressures below one atmosphere to result in precipitation of a metal hydride. Precipitation-decomposition pressures were consistent with the literature. The addition to NaK-78 of 1 to 4 at.% lithium considerably diminished the hydrogen activity and resulted in precipitation at lower hydrogen pressure. A mass action model is postulated to explain the phenomena. It is suggested that in liquid-alkali-metal mixtures, dissolved hydrogen exists largely in the form of undissociated metal-hydride molecules or ion pairs, with the different metals combining with the hydrogen in proportion to their concentration and their affinity for hydrogen.