ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Paul F. Gast
Nuclear Science and Engineering | Volume 19 | Number 2 | June 1964 | Pages 196-202
Technical Paper | doi.org/10.13182/NSE64-A28909
Articles are hosted by Taylor and Francis Online.
A variational principle for resonance capture in heterogeneous reactors has been developed. The functional becomes the exact resonance integral when the flux is exact, and in general the functional also has the convenient form of an explicit resonance integral multiplied by a correction factor. A reasonable trial function for the adjoint is selected, which allows explicit, interpretable expressions to be derived for the correction factor when trial functions corresponding to the various currently used approximations are inserted. When solutions of Chernick-Rothenstein type equations are used for trial functions, the correction factor is unity. The inexactness in these equations is detectable only with higher-order approximations to the adjoint function. The correction factor for other approximations then furnishes a measure of the error as compared to exact solutions of C-R equations as a standard. Several applications are discussed.