ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
What’s in your Dubai chocolate? Nuclear scientists test pistachios for toxins
For the uninitiated, Dubai chocolate is a candy bar filled with pistachio and tahini cream and crispy pastry recently popularized by social media influencers. While it’s easy to dismiss as a viral craze now past its peak, the nutty green confection has spiked global pistachio demand, and growers and processors are ramping up production. That means more pistachios need to be tested for aflatoxins—a byproduct of a common crop mold.
J. M. Corum, W. A. Shaw
Nuclear Science and Engineering | Volume 19 | Number 2 | June 1964 | Pages 143-150
Technical Paper | doi.org/10.13182/NSE64-A28902
Articles are hosted by Taylor and Francis Online.
Temperature differences which will exist across the diameters of the Experimental Gas-Cooled Reactor (EGCR) fuel elements will cause the elements to bow. Since the elements are restrained at their midpoints as well as at the ends, the bowing will be accompanied by bending stresses and, as these stresses relax at the relatively high element temperatures, the bowing deflections will increase. A theoretical analysis was developed for predicting the time-dependent bowing behavior of an element subjected to a linearly distributed temperature difference across the diameter. The element behavior was considered to be a combination of creep and elastic bending. The analysis shows that, in every case, the maximum limiting deflection that an element will approach is approximately 2.63 times the initial bowing deflection, or 78% of the maximum deflection the element would have if its midpoint behaved as a plastic hinge. Although the time-dependent bowing will lead to increased temperature gradients, the analysis indicates that the additional deflection produced by the increase will be small compared to the deflection that caused the increase, and, consequently, the elements will be thermally stable.