ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
J. M. Corum, W. A. Shaw
Nuclear Science and Engineering | Volume 19 | Number 2 | June 1964 | Pages 143-150
Technical Paper | doi.org/10.13182/NSE64-A28902
Articles are hosted by Taylor and Francis Online.
Temperature differences which will exist across the diameters of the Experimental Gas-Cooled Reactor (EGCR) fuel elements will cause the elements to bow. Since the elements are restrained at their midpoints as well as at the ends, the bowing will be accompanied by bending stresses and, as these stresses relax at the relatively high element temperatures, the bowing deflections will increase. A theoretical analysis was developed for predicting the time-dependent bowing behavior of an element subjected to a linearly distributed temperature difference across the diameter. The element behavior was considered to be a combination of creep and elastic bending. The analysis shows that, in every case, the maximum limiting deflection that an element will approach is approximately 2.63 times the initial bowing deflection, or 78% of the maximum deflection the element would have if its midpoint behaved as a plastic hinge. Although the time-dependent bowing will lead to increased temperature gradients, the analysis indicates that the additional deflection produced by the increase will be small compared to the deflection that caused the increase, and, consequently, the elements will be thermally stable.