ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
J. M. Corum, W. A. Shaw
Nuclear Science and Engineering | Volume 19 | Number 2 | June 1964 | Pages 143-150
Technical Paper | doi.org/10.13182/NSE64-A28902
Articles are hosted by Taylor and Francis Online.
Temperature differences which will exist across the diameters of the Experimental Gas-Cooled Reactor (EGCR) fuel elements will cause the elements to bow. Since the elements are restrained at their midpoints as well as at the ends, the bowing will be accompanied by bending stresses and, as these stresses relax at the relatively high element temperatures, the bowing deflections will increase. A theoretical analysis was developed for predicting the time-dependent bowing behavior of an element subjected to a linearly distributed temperature difference across the diameter. The element behavior was considered to be a combination of creep and elastic bending. The analysis shows that, in every case, the maximum limiting deflection that an element will approach is approximately 2.63 times the initial bowing deflection, or 78% of the maximum deflection the element would have if its midpoint behaved as a plastic hinge. Although the time-dependent bowing will lead to increased temperature gradients, the analysis indicates that the additional deflection produced by the increase will be small compared to the deflection that caused the increase, and, consequently, the elements will be thermally stable.