ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
G. W. Mason, D. F. Peppard
Nuclear Science and Engineering | Volume 17 | Number 2 | October 1963 | Pages 247-251
Solvent Extraction Chemistry Symposium. Part II. | doi.org/10.13182/NSE63-A28886
Articles are hosted by Taylor and Francis Online.
Certain applications of acidic organophosphorus extractants to transuranic separations devised in the authors' laboratory are described. In a system employing mono-2-ethyl hexyl phosphoric acid, (2-EtHexO)PO(OH)2, symbolized as H2MEHP, in toluene vs. a concentrated aqueous NH4CNS solution, the ratio KPm/KAm is approximately 50, while in the corresponding TBP system it is considerably less than unity. The H2MEHP (in toluene) vs. HCl system has been used in effecting mutual M(III), M(IV), and M(VI) separations. Throughout the 1–12 M HCl range the extractant dependency (0.05-0.3 F H2MEHP) approximates first power for lanthanides(III), Pu(III), Am (III), Np(IV) and U(VI). Comparable studies of other H2MGP and H2[GP] compounds, i.e., (GO)PO(OH)2 and GPO(OH)2, are reported. A system employing HDΦP, i.e. (C6H50)2PO(OH), in toluene vs. a concentrated aqueous chloride phase serves to effect the difficult Cf-Y separation, the ratio KCf/KY being approximately 400. Systems involving a mono acidic phosphate, HDGP, or phosphonate, HG[G'P], in a diluent vs. an aqueous mineral acid solution have proved valuable in effecting the Cf-Cm separation, Cf extracting the better. The fact that actinides(IV) are much more extractable than actinides(III) in HDGP vs. mineral acid systems is utilized in the purification of Bk(IV) by extraction from a nitrate solution into a n-heptane solution of di 2-ethyl hexyl phosphoric acid, HDEHP.