ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
C. A. Wilkins
Nuclear Science and Engineering | Volume 17 | Number 2 | October 1963 | Pages 220-222
Technical Paper | doi.org/10.13182/NSE63-A28882
Articles are hosted by Taylor and Francis Online.
In a single-species system with similarly varying cross sections, it is commonly assumed that the collision density F(u) has the asymptotic form kemu, where m satisfies the equation (1 − α) (1 + m) − c(1 − α1+m) = 0. This is equivalent to assuming that the pole with greatest real part of the Laplace transform of F(u) occurs at the real root m(≠−1) of the last equation. No proof of this assumption appears to have been given hitherto in the literature, so it is now shown, by the use of certain results in the theory of transcendental equations, that if z is any complex root of the equation, then irrespective of the values of α and c, Re z < min (−1, m). Finally, the constant k in the assumed form of F(u) is determined exactly, in terms of m, by taking the residue at m of the Laplace transform of F(u).