ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
C. A. Wilkins
Nuclear Science and Engineering | Volume 17 | Number 2 | October 1963 | Pages 220-222
Technical Paper | doi.org/10.13182/NSE63-A28882
Articles are hosted by Taylor and Francis Online.
In a single-species system with similarly varying cross sections, it is commonly assumed that the collision density F(u) has the asymptotic form kemu, where m satisfies the equation (1 − α) (1 + m) − c(1 − α1+m) = 0. This is equivalent to assuming that the pole with greatest real part of the Laplace transform of F(u) occurs at the real root m(≠−1) of the last equation. No proof of this assumption appears to have been given hitherto in the literature, so it is now shown, by the use of certain results in the theory of transcendental equations, that if z is any complex root of the equation, then irrespective of the values of α and c, Re z < min (−1, m). Finally, the constant k in the assumed form of F(u) is determined exactly, in terms of m, by taking the residue at m of the Laplace transform of F(u).