ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
R. Kladnik.
Nuclear Science and Engineering | Volume 17 | Number 2 | October 1963 | Pages 185-191
Technical Paper | doi.org/10.13182/NSE63-A28877
Articles are hosted by Taylor and Francis Online.
The stationary velocity-dependent transport equation for an infinite homogeneous source-free medium is solved by expanding the solution into a power series of the eigenvalues κ = 1/L. The integral equations, obtained by equating terms with the same κ0m, have been solved numerically on the IBM 704 computer using the iteration procedure. The monatomic gaseous model for the scattering process has been used assuming scattering cross section to be independent of the relative velocity and the absorption cross section to follow the 1/v law. A general expression for the diffusion coefficient in the absorbing medium has been obtained whereas the diffusion length L is obtained as the only positive real root of an algebraic equation whose order depends on the degree of the approximation. A comparison between the calculated and measured values of the diffusion length in poisoned water shows that water can be described roughly as a monatomic gas with A = 1.9 and ls(∞) = 0.40 cm. An empirical formula for the effective temperature of the neutron velocity distribution is evaluated.