ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
R. Kladnik.
Nuclear Science and Engineering | Volume 17 | Number 2 | October 1963 | Pages 185-191
Technical Paper | doi.org/10.13182/NSE63-A28877
Articles are hosted by Taylor and Francis Online.
The stationary velocity-dependent transport equation for an infinite homogeneous source-free medium is solved by expanding the solution into a power series of the eigenvalues κ = 1/L. The integral equations, obtained by equating terms with the same κ0m, have been solved numerically on the IBM 704 computer using the iteration procedure. The monatomic gaseous model for the scattering process has been used assuming scattering cross section to be independent of the relative velocity and the absorption cross section to follow the 1/v law. A general expression for the diffusion coefficient in the absorbing medium has been obtained whereas the diffusion length L is obtained as the only positive real root of an algebraic equation whose order depends on the degree of the approximation. A comparison between the calculated and measured values of the diffusion length in poisoned water shows that water can be described roughly as a monatomic gas with A = 1.9 and ls(∞) = 0.40 cm. An empirical formula for the effective temperature of the neutron velocity distribution is evaluated.