ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. C. Carter, D. W. Sparks, J. H. Tesster
Nuclear Science and Engineering | Volume 8 | Number 4 | October 1960 | Pages 326-339
Technical Paper | doi.org/10.13182/NSE60-A28863
Articles are hosted by Taylor and Francis Online.
This article is concerned with what are considered to be the significant feedback mechanisms of EBR-I Mark III. The objective is that of providing an explanation of the dynamic behavior of this particular fast reactor. A mathematical model of the core and blankets is postulated and an analog of the equations is constructed. The response of the model and of the reactor to the same signal at any given operating conditions are in good agreement. The analog facilitates an analysis of the feedback producing the response. The reactor is considered to constitute a closed loop nonlinear mechanical system with forcing functions resulting from variations in neutron density and the flow of NaK through the core and blankets. The significant sources of internal feedback are considered to be the variation in volume of the uranium and the variation in the density of NaK. Resistance to the free motion of uranium in response to thermal expansion provides the significant nonlinearities in the system. This resistance results from the physical characteristics of the redundant structure constituting the core, blankets, and containing shell. All the equations defining the time dependent physical phenomena are developed from an analysis of the reactor system, but the constants in the nonlinear equations of motion of the materials of the core and blankets are synthesized from low power operation of the reactor.