ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Alain Scola, William Managan
Nuclear Science and Engineering | Volume 6 | Number 4 | October 1959 | Pages 294-297
Technical Paper | doi.org/10.13182/NSE59-A28847
Articles are hosted by Taylor and Francis Online.
When flux measurements are made in reactors or in piles, large ion chambers are commonly used. The current output of these chambers is read in terms of flux. The chambers depress the flux, however, and a correction should be applied to get the value of the unperturbed flux. The flux perturbation was measured in a large graphite diffusing medium, the Argonne National Laboratory Standard Pile, and found to be between 5% and 25% when measured on the outer surface of typical ion chambers. At about 10 in. from the end of the chamber the perturbation was no longer observed. The flux was measured with a small fission counter which, of itself, did not depress the flux appreciably. To measure the flux depression inside an ion chamber, the latter was simulated by stacking boron-coated aluminum plates above and below the small fission counter used previously. The measurement of the flux depression was found to be in good agreement with that which can be estimated from a calculation in which an exponential absorption is assumed. From these experiments it is concluded that the value of the flux measured with a large boron coated ion chamber gives an estimation of the flux within 20% to 50% of the unperturbed value depending on the amount of boron in the chamber, while the estimation of the flux is within 5% to 15% when measured with a large U235-coated fission counter. It should be noted that, although these results apply in a graphite diffusing medium, they do not necessarily apply in an absorbing medium such as the heavy concrete which usually surrounds the instrument holes in reactors.