ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Contractor selected for Belgian LLW/ILW facility
Brussels-based construction group Besix announced that is has been chosen by the Belgian agency for radioactive waste management ONDRAF/NIRAS for construction of the country’s surface disposal facility for low- and intermediate-level short-lived nuclear waste in Dessel.
Moses A. Greenfield, Roscoe L. Koontz, Alan A. Jarrett
Nuclear Science and Engineering | Volume 4 | Number 4 | October 1958 | Pages 563-569
Technical Paper | doi.org/10.13182/NSE58-A28832
Articles are hosted by Taylor and Francis Online.
The method for computing absolute thermal neutron flux from measurements made with activated indium foils is described. By combining data from the counting rate of indium foils in 2π proportional counters with appropriate corrections for foil weights and neutron effects, the thermal flux is expressed in terms of σO, the thermal absorption cross section of In115. This procedure may be used by laboratories which do not have access to a standard graphite pile or to a standard neutron source. This method has an estimated error of less than 5% which is a function of the accuracy with which it is possible to determine the various correction factors for beta counting. A possible fixed error in the value of σO can easily be corrected for and incorporated into the methods used.