ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
NEUP honors young ANS members with R&D awards
Each year, the Department of Energy’s Nuclear Energy University Program (NEUP) recognizes graduate and undergraduate students for their innovative nuclear energy research. The winners of the Innovations in Nuclear Energy Research and Development Student Competition (INSC) receive honoraria along with travel and conference opportunities, including the chance to present their publications at the annual American Nuclear Society Winter Conference & Expo.
O. C. Dean, G. K. Ellis
Nuclear Science and Engineering | Volume 4 | Number 4 | October 1958 | Pages 509-521
Technical Paper | doi.org/10.13182/NSE58-A28827
Articles are hosted by Taylor and Francis Online.
A process, developed at Oak Ridge National Laboratory, produced thorium metal by the continuous reduction of anhydrous thorium tetrachloride with sodium amalgam on a scale up to 3.5 pounds per hour. The salt was vigorously agitated with an excess of sodium amalgam which was produced by the electrolysis of aqueous sodium hydroxide. The resulting slurry of thorium mercuride in mercury was washed free from impurities and reaction by-products with dilute HC1 and water. A solid concentrate of the thorium mercuride was prepared by filter-pressing the dilute slurry. The remaining mercury was removed by vacuum-distillation, resulting in massive metal of about 0.8 of the theoretical thorium density. The metal was fabricated into rods by direct extrusion or by arc-melting followed by extrusion.