ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
O. C. Dean, G. K. Ellis
Nuclear Science and Engineering | Volume 4 | Number 4 | October 1958 | Pages 509-521
Technical Paper | doi.org/10.13182/NSE58-A28827
Articles are hosted by Taylor and Francis Online.
A process, developed at Oak Ridge National Laboratory, produced thorium metal by the continuous reduction of anhydrous thorium tetrachloride with sodium amalgam on a scale up to 3.5 pounds per hour. The salt was vigorously agitated with an excess of sodium amalgam which was produced by the electrolysis of aqueous sodium hydroxide. The resulting slurry of thorium mercuride in mercury was washed free from impurities and reaction by-products with dilute HC1 and water. A solid concentrate of the thorium mercuride was prepared by filter-pressing the dilute slurry. The remaining mercury was removed by vacuum-distillation, resulting in massive metal of about 0.8 of the theoretical thorium density. The metal was fabricated into rods by direct extrusion or by arc-melting followed by extrusion.