ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
B. W. LeTourneau, R. E. Grimble
Nuclear Science and Engineering | Volume 1 | Number 5 | October 1956 | Pages 359-369
Technical Paper | doi.org/10.13182/NSE56-A28774
Articles are hosted by Taylor and Francis Online.
In the thermal design of nuclear power reactors having parallel coolant channels, engineering hot channel factors have been established to account for small dimensional deviations from the nominal design of the reactor fuel elements resulting from manufacturing tolerances, and for departures from ideal flow conditions. A description of the various deviations from nominal likely to be encountered in a practical reactor design is presented, together with methods for estimating the magnitude of the effect of each on channel enthalpy rise, film temperature difference, and maximum heat flux. Examples are given for a geometry consisting of parallel plate type fuel elements separated by rectangular coolant channels.