ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
D. R. Olander
Nuclear Science and Engineering | Volume 82 | Number 2 | October 1982 | Pages 190-205
Technical Paper | doi.org/10.13182/NSE82-A28701
Articles are hosted by Taylor and Francis Online.
A detailed model of the interaction of ruthenium and urania is developed and compared to experimental data. The mechanism involves physical solution of the metal in the grain boundaries of the ceramic followed by simultaneous diffusion and chemical reaction to produce URu3 intergranular inclusions. The process occurs only when the oxide is substoichiometric, the reduction being effected by oxygen absorption by the refractory metal crucible containing the specimen. Reaction ceases when the URU3 product in the grain boundary reaches a thickness that prevents removal of the other reaction product, oxygen. Fitting the model predictions to the isothermal ruthenium spreading data from a source plane of the metal held between oxide pellets provides quantitative estimates of the parameters of the model The theory also correctly predicts the shape and magnitude of ruthenium migration in UO2 in a temperature gradient, in which thermal diffusion does not appear to play a significant role.