ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
D. R. Olander
Nuclear Science and Engineering | Volume 82 | Number 2 | October 1982 | Pages 190-205
Technical Paper | doi.org/10.13182/NSE82-A28701
Articles are hosted by Taylor and Francis Online.
A detailed model of the interaction of ruthenium and urania is developed and compared to experimental data. The mechanism involves physical solution of the metal in the grain boundaries of the ceramic followed by simultaneous diffusion and chemical reaction to produce URu3 intergranular inclusions. The process occurs only when the oxide is substoichiometric, the reduction being effected by oxygen absorption by the refractory metal crucible containing the specimen. Reaction ceases when the URU3 product in the grain boundary reaches a thickness that prevents removal of the other reaction product, oxygen. Fitting the model predictions to the isothermal ruthenium spreading data from a source plane of the metal held between oxide pellets provides quantitative estimates of the parameters of the model The theory also correctly predicts the shape and magnitude of ruthenium migration in UO2 in a temperature gradient, in which thermal diffusion does not appear to play a significant role.