ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
C. W. Reich, R. L. Bunting
Nuclear Science and Engineering | Volume 82 | Number 2 | October 1982 | Pages 132-142
Technical Paper | doi.org/10.13182/NSE82-A28696
Articles are hosted by Taylor and Francis Online.
In this paper, we point out that data from earlier experiments carried out to measure beta-strength functions for short-lived fission products can also be used to provide average beta- and gamma-decay energy values for these nuclides. In our evaluation of decay data for the ENDF/B-V fission product file, we have used this approach as a means of deducing average decay energy values for a number of these isotopes for which experimentally based average values would otherwise not have been available. The methods employed are discussed, and the results for the average beta-decay energies per decay, <Eβ>, are presented. Where available, <Eβ> values deduced from decay scheme studies and from direct beta-spectrum measurements are given for purposes of comparison. Evidence is presented that suggests that the conventional decay scheme studies may not be a reliable source of average decay energy data for nuclides with large Qβ values. We propose that different types of experimental measurements, possibly involving total absorption techniques (of which the beta-strength work treated here might be considered as one example), may provide a better means of producing this important information.