ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Laurian Dinca, Tunc Aldemir
Nuclear Science and Engineering | Volume 127 | Number 2 | October 1997 | Pages 199-219
Technical Paper | doi.org/10.13182/NSE97-A28597
Articles are hosted by Taylor and Francis Online.
A model-based parameter estimation method for nonlinear systems that does not require the linearization of the system equations and that can account for uncertainties in the monitored data as well as the parameters (e.g., random variations) is described. The method is particularly suitable for fault diagnosis because of its capability to assign probabilities of occurrence to user-specified parameter magnitude intervals that may be associated with system faults. The method regards system evolution in time as transitions between these intervals as well as user-specified magnitude intervals of the dynamic variables. These transition rates are obtained on-line from the system model and the monitored dynamic variable data and constitute a Markov chain in discrete time. The method then compares predicted and observed data at a given time step to narrow the estimated parameter range in the next time step. Implementations using a second-order van der Pol oscillator and a third-order system describing temporal xenon oscillations in a hypothetical reactor indicate that the method is computationally efficient and can be used for multiparameter estimation with incomplete information on the system state.