ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
M. Marseguerra, M. E. Ricotti, E. Zio
Nuclear Science and Engineering | Volume 124 | Number 2 | October 1996 | Pages 339-348
Techniacl Paper | doi.org/10.13182/NSE96-A28583
Articles are hosted by Taylor and Francis Online.
The early detection of incipient failures is of paramount importance for the safety and reliability of nuclear power plants. The feasibility of using artificial neural networks as process simulators in a fault detection device is explored. Two neural networks are trained to follow the dynamic evolution of the system pressure in a nonfaulty pressurizer of a pressurized water reactor. During an accident, the discrepancy between the plant’s signals and the neural networks’predictions can be used to rapidly detect the faulty condition. In reality, the signals will be unavoidably affected by a certain level of noise. The robustness of neural networks to noisy patterns assures a satisfactory degree of accuracy in the process predictions and, therefore, a high efficiency in the detection as well.