ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
M. Marseguerra, M. E. Ricotti, E. Zio
Nuclear Science and Engineering | Volume 124 | Number 2 | October 1996 | Pages 339-348
Techniacl Paper | doi.org/10.13182/NSE96-A28583
Articles are hosted by Taylor and Francis Online.
The early detection of incipient failures is of paramount importance for the safety and reliability of nuclear power plants. The feasibility of using artificial neural networks as process simulators in a fault detection device is explored. Two neural networks are trained to follow the dynamic evolution of the system pressure in a nonfaulty pressurizer of a pressurized water reactor. During an accident, the discrepancy between the plant’s signals and the neural networks’predictions can be used to rapidly detect the faulty condition. In reality, the signals will be unavoidably affected by a certain level of noise. The robustness of neural networks to noisy patterns assures a satisfactory degree of accuracy in the process predictions and, therefore, a high efficiency in the detection as well.