ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P. K. Sarkar, Herbert Rief
Nuclear Science and Engineering | Volume 124 | Number 2 | October 1996 | Pages 291-308
Technical Paper | doi.org/10.13182/NSE96-A28579
Articles are hosted by Taylor and Francis Online.
The amounts of change in the variance and in the efficiency of nonanalog Monte Carlo simulations for certain variations in the biasing parameters are important quantities when optimizing such simulations. Anew approach, based on the differential operator sampling technique, is outlined to estimate the derivatives of variance and efficiency with respect to the biasing parameters; the same simulation constructed to solve the primary problem is used. An algorithm requiring the first- and higher order derivatives of the natural logarithm of the second moment to predict minimum-variance-biasing parameters is presented. Equations pertaining to the algorithm are derived and solved numerically for an exponentially transformed one-group slab transmission problem for various slab thicknesses and scattering probabilities. The results indicate that optimization of nonanalog simulations can be achieved so that the present method will be useful in self-learning Monte Carlo schemes.