ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Yukiko Hanzawa, Daisuke Hiroishi, Chihiro Matsuura, Kenkichi Ishigure
Nuclear Science and Engineering | Volume 124 | Number 2 | October 1996 | Pages 211-218
Technical Paper | doi.org/10.13182/NSE96-A28572
Articles are hosted by Taylor and Francis Online.
The solubility of nickel ferrite is measured at 423, 473, and 523 K in a pure or oxygenated water system, which is similar to boiling water reactor conditions‚ using a specially designed batch autoclave system. Thermodynamic analysis is performed by a procedure minimizing Gibbs free energy of the system at the final state. On the basis of both the analysis and the experimental results, it is shown that the dissolution mechanism of NiFe2O4 under the condition where no redox reaction takes place consists of both NiFe2O4 dissolution and Fe2O3 precipitation equilibria. The calculated value of the solubility at 423 K using literature values of the thermodynamic data agree with the experimental value, but at 473 and 523 K they deviate somewhat from the experimental ones. By fitting to the experimental results at these temperatures, the thermodynamic data of NiFe2O4 for 473 and 523 K are reanalyzed, and new values are proposed.