ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Ji Bok Lee, Byong Whie Lee, Byung Chul Lee
Nuclear Science and Engineering | Volume 121 | Number 2 | October 1995 | Pages 334-344
Technical Paper | doi.org/10.13182/NSE95-A28569
Articles are hosted by Taylor and Francis Online.
A radiation streaming analysis for the radial and tangential beam tubes of a 250-kW TRIGA reactor was performed using the MCNP-MCNP coupling method. The measurements of the neutron flux and dose rate in the beam tubes were also conducted using gold-aluminum foils and thermoluminescent dosimeters. When compared with the experimental results, the calculated thermal neutron flux reproduces the measurement well, i.e., within 2 to 90%. The calculated nonthermal neutron and gamma-ray dose rates show about the same distribution along the beam tube as the measurements. For the neutron dose rate, there is a big discrepancy between the calculation and the measurement for the radial beam tube but good agreement for the tangential tube. The calculational method using MCNP-MCNP coupling, which is used here, may well be applicable to analyzing the particle streaming phenomena in the beam tube of a research reactor. The beam characteristics of the radial and tangential tubes were investigated based on MCNP calculations. The thermal neutron fluxes are about the same in both beam tubes, but the ratios of the thermal-to-nonthermal neutron flux and the thermal neutron-to-gamma-ray flux in the tangential beam tube increase from only 12% and 18% higher at the nose to 2.4 times and 2.8 times higher at 130 cm from the nose, respectively, compared with those for the radial tube. Thus, the tangential beam tube gives a better neutron beam quality, i.e., the same thermal neutron flux and lower nonthermal neutron and gamma-ray fluxes at the tangential beam tube exit as compared with the radial one.