ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
V. Khromov, E. Kryuchkov, G. Tikhomirov, L. Goncharov, V. Kondakov
Nuclear Science and Engineering | Volume 121 | Number 2 | October 1995 | Pages 264-276
Technical Paper | doi.org/10.13182/NSE95-A28563
Articles are hosted by Taylor and Francis Online.
A new numerical method, the probabilistic method of discrete ordinates (PMDO) for solving multigroup transport equations in three-dimensional complex geometry, is presented. The method can be used for reactor core and shielding calculations. Integral equations are adopted for the angular flux in cells of arbitrary form. They are coupled by means of net currents defined at interfaces. The sphere of directions is arbitrarily subdivided into a number of angular diapasons. These diapasons, along with cell volume and pieces of cell surface, produce elementary phase domains, so the basic PMDO equations are the algebraic analogues of piece-wise coupled integral transport equations. They are written for neutron flux and currents integrated over corresponding phase domains. The coefficients of the equations discretely depend on the angular variable and have the meaning of probabilities of uncollided neutrons being transmitted between different phase domains. On the basis of algebraic equations separately obtained for coarse and fine domains, the global-local iterative PMDO scheme has also been developed specifically for calculations in extensive heterogeneous media. Together with the direct PMDO equations, the system of conjugate equations has been constructed for the calculation of neutron importance function related to various nonlinear functionals. Codes based on the method and some numerical applications, including examples related to criti-cality calculations and deep penetration problems, have been briefly discribed.