ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
Nam Zin Cho, Jae Man Noh
Nuclear Science and Engineering | Volume 121 | Number 2 | October 1995 | Pages 245-253
Technical Paper | doi.org/10.13182/NSE95-A28561
Articles are hosted by Taylor and Francis Online.
A new hexagonal nodal method that directly solves the multidimensional diffusion equation without the transverse integration procedure is described. The new method expands the homogeneous flux distributions within a node in nonseparable analytic basis functions satisfying the neutron diffusion equations at any point of the node. Because the new method does not use the transverse integration, it does not suffer from the need of approximating the transverse leakage shape and the nonphysical singular terms occurring in hexagonal nodes. And, because of the use of analytical basis functions and the corner-point flux included in the nodal coupling equations, the method accurately models large localized flux gradients in the vicinity of nodal corner points as well as nodal interfaces. The new method was tested on two hexagonal benchmark problems consisting of uranium-oxide and mixed-oxide fuel assemblies to demonstrate its accuracy and applicability to realistic problems. The results show that the new method accurately predicts the nodal flux distribution and the core multiplication factor.