ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Nam Zin Cho, Jae Man Noh
Nuclear Science and Engineering | Volume 121 | Number 2 | October 1995 | Pages 245-253
Technical Paper | doi.org/10.13182/NSE95-A28561
Articles are hosted by Taylor and Francis Online.
A new hexagonal nodal method that directly solves the multidimensional diffusion equation without the transverse integration procedure is described. The new method expands the homogeneous flux distributions within a node in nonseparable analytic basis functions satisfying the neutron diffusion equations at any point of the node. Because the new method does not use the transverse integration, it does not suffer from the need of approximating the transverse leakage shape and the nonphysical singular terms occurring in hexagonal nodes. And, because of the use of analytical basis functions and the corner-point flux included in the nodal coupling equations, the method accurately models large localized flux gradients in the vicinity of nodal corner points as well as nodal interfaces. The new method was tested on two hexagonal benchmark problems consisting of uranium-oxide and mixed-oxide fuel assemblies to demonstrate its accuracy and applicability to realistic problems. The results show that the new method accurately predicts the nodal flux distribution and the core multiplication factor.