ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Yoichi Watanabe, James Monroe, Shyam Keshavmurthy, Alan M. Jacobs, Edward T. Dugan
Nuclear Science and Engineering | Volume 122 | Number 1 | January 1996 | Pages 55-67
Technical Paper | doi.org/10.13182/NSE96-A28547
Articles are hosted by Taylor and Francis Online.
Image restoration techniques are studied for Compton backscatter imaging as applied to identification of a land mine buried in soil. Mathematical methods are developed to restore images, which include artifacts due to photon noise, soil surface irregularity, and vertical motion of the imaging system. The image restoration is formulated as an inverse photon transport problem. The forward photon transport is modeled by using a two-collision response function. The inverse problem then is solved by applying an iterative minimization algorithm, resulting in an estimation of characteristic parameters of objects. Mathematical relations among detector responses are derived by experimentally analyzing the detector response characteristics when there are soil surface irregularity and vertical motion of the imaging system. These are used to remove the artifacts from the images. The method successfully restores the geometrical feature of the object under simulated battlefield imaging conditions.