ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
J. C. Helton, J. E. Bean, B. M. Butcher, J. W. Garner,‡ J.D. Schreiber, P. N. Swift, P. Vaughn
Nuclear Science and Engineering | Volume 122 | Number 1 | January 1996 | Pages 1-31
Technical Paper | doi.org/10.13182/NSE96-A28545
Articles are hosted by Taylor and Francis Online.
Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis, stepwise regression analysis, and examination of scatterplots are used in conjunction with the BRAGFLO model to examine two-phase flow (i.e., gas and brine) at the Waste Isolation Pilot Plant, which is being developed by the U.S. Department of Energy as a disposal facility for trans-uranic waste, to provide insights on factors that are potentially important in showing compliance with applicable regulations of the U.S. Environmental Protection Agency. Specific regulations include “Petitions to Allow Land Disposal of a Waste Prohibited Under Subpart C of Part 268” (40 CFR 268.6), which implements the Resource Conservation and Recovery Act and establishes maximum environmental concentrations for regulated chemicals such as volatile organic compounds (VOCs) and heavy metals, and “Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes” (40 CFR 191, Subpart B), which places a probabilistic limit on allowable radioactive releases from a disposal facility over a 10 000-yr time period. The primary topics investigated are (a) gas production due to corrosion of steel, (b) gas production due to microbial degradation of cellulosics, and (c) gas migration into anhydrite marker beds in the Salado Formation, which is the host unit into which the waste will be emplaced. Gas production and movement is of particular importance in establishing compliance with 40 CFR 268.6 because of its influence on the movement of VOCs. Important variables identified in the analysis include (a) initial brine saturation of the waste, (b) stoichiometric terms for corrosion of steel and microbial degradation of cellulosics, and (c) gas barrier pressure in the anhydrite marker beds.