ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Chang Hyo Kim, Jin Young Cho, Han Gyu Joo
Nuclear Science and Engineering | Volume 118 | Number 2 | October 1994 | Pages 108-121
Technical Paper | doi.org/10.13182/NSE94-A28540
Articles are hosted by Taylor and Francis Online.
Three-dimensional (3D) correction factors designed to take into account the heterogeneity effects of the missing dimension in two-dimensional (2D) reactor computation are rigorously defined. An approximate method for computing the 3D correction factors is proposed by introducing simplified model cores. For verification of the proposed method, 2D and 3D ROCS code computations are performed for the first three cycles of the Yonggwang Unit 2 pressurized water reactor. The utility of the proposed method is then discussed by demonstrating that the 2D ROCS results with the use of the approximate 3D correction factors agree well with the 3D ROCS results in the letdown behavior of the critical soluble boron concentration and the core power distribution.