ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
M. Marseguerra, E. Zio
Nuclear Science and Engineering | Volume 117 | Number 3 | July 1994 | Pages 194-200
Technical Paper | doi.org/10.13182/NSE94-A28534
Articles are hosted by Taylor and Francis Online.
The Boltzmann machine is a general-purpose artificial neural network that can be used as an associative memory as well as a mapping tool. The usual information entropy is introduced, and a network energy function is suitably defined. The network’s training procedure is based on the simulated annealing during which a combination of energy minimization and entropy maximization is achieved.,An application in the nuclear reactor field is presented in which the Boltzmann input-output machine is used to detect and diagnose a pipe break in a simulated auxiliary feedwater system feeding two coupled steam generators. The break may occur on either the hot or the cold leg of any of the two steam generators. The binary input data to the network encode only the trends of the thermohydraulic signals so that the network is actually a polarity device. The results indicate that the trained neural network is actually capable of performing its task. The method appears to be robust enough so that it may also be applied with success in the presence of substantial amounts of noise that cause the network to be fed with wrong signals.