ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Edward P. Ficaro, David K. Wehe
Nuclear Science and Engineering | Volume 117 | Number 3 | July 1994 | Pages 158-176
Technical Paper | doi.org/10.13182/NSE94-A28531
Articles are hosted by Taylor and Francis Online.
The KENO-NR Monte Carlo code was developed to simulate the measurement of R(ω) = G*12(ω)G13(ω)/G11(ω)G23(ω), a ratio of spectral densities measured by the 252Cf source-driven noise analysis (CSDNA) method for determining subcriticality. From a direct comparison of simulated and measured R(ω), cross sections and the physical system model can be benchmarked and then used in standard criticality codes for determining keff for a multiplying system. This procedure eliminates the dependence of the CSDNA method on the point-kinetics model and allows cross-section and geometry models to be validated for noncritical configurations. For a set of uranium cylinders (93.2 wt% 235sU and 17.7-cm outer diameter) of varying height, the simulated and the measured R(ω) values in the low-frequency limit and the prompt neutron decay constant a agreed to within 10%. These results indicate that the approach of validating a simulation of the direct experimental data should lead to improved neutronic parameters for fissile systems.