ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
A. Hébert
Nuclear Science and Engineering | Volume 115 | Number 2 | October 1993 | Pages 177-184
Technical Note | doi.org/10.13182/NSE115-177
Articles are hosted by Taylor and Francis Online.
A practical collision probability model is presented for the description of geometries with many levels of heterogeneity. Regular regions of the macrogeometry are assumed to contain a stochastic mixture of spherical grains or cylindrical tubes. Simple expressions for the collision probabilities in the global geometry are obtained as a function of the collision probabilities in the macro- and microgeometries. This model was successfully implemented in the collision probability kernel of the APOLLO-1, APOLLO-2, and DRAGON lattice codes for the description of a broad range of reactor physics problems. Resonance self-shielding and depletion calculations in the microgeometries are possible because each microregion is explicitly represented.