ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
A. Hébert, G. Mathonnière
Nuclear Science and Engineering | Volume 115 | Number 2 | October 1993 | Pages 129-141
Technical Paper | doi.org/10.13182/NSE115-129
Articles are hosted by Taylor and Francis Online.
Proposals are made for improving current second-generation superhomogénéisation (SPH) methods in three different ways and to use them in heterogeneous and homogeneous diffusion procedures for reactor design and operating calculations. The first improvement consists of using a surface radial leakage model in the flux calculation to represent the macroscopic flux curvature in the assembly. The second improvement is accomplished by the introduction of the Selengut normalization in the SPH equivalence procedure replacing the flux-volume normalization currently used with second-generation methods. Finally, the buckling calculation is improved to better represent the target color-set. Second- and third-generation SPH techniques for heterogeneous or homogeneous diffusion procedures are now implemented as a unified algorithm in a lattice code. Two-group benchmarks are proposed to measure precisely the equivalence effectiveness and the improvement gained with third-generation methods.