ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
R. Bovalini, F. D’Auria, G. M. Galassi
Nuclear Science and Engineering | Volume 115 | Number 2 | October 1993 | Pages 89-111
Technical Paper | doi.org/10.13182/NSE93-A28521
Articles are hosted by Taylor and Francis Online.
A methodology is described that can be used for the extrapolation of thermal-hydraulic phenomena measured in differently scaled integral test facilities to nuclear reactor plant conditions. The use of a system code in this context is confirmed to be of fundamental importance, provided that the code’s scaling capability has been demonstrated. The starting data base for the proposed study consists of the measured quantities and corresponding RELAP5/MOD2 code calculation results related to a boiling water reactor small-break loss-of-coolant accident (SBLOCA) counterpart test activity, a pressurized water reactor (PWR) natural-circulation type test activity, and a PWR SBLOCA counterpart test activity. The proof that this methodology can be used for evaluating uncertainties in predicting transient behavior in nuclear power plants is the main result of this study. Data have been obtained that give a value of the foreseeable error ranges in the provision of plant behavior in the three cases considered.