ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Ribbon-cutting scheduled for Advanced Manufacturing Collaborative
Energy Secretary Chris Wright will attend the opening of the Advanced Manufacturing Collaborative in Aiken, S.C., on August 7. Wright will deliver remarks and join Savannah River National Laboratory leadership and partners for a ribbon-cutting ceremony.
R. Bovalini, F. D’Auria, G. M. Galassi
Nuclear Science and Engineering | Volume 115 | Number 2 | October 1993 | Pages 89-111
Technical Paper | doi.org/10.13182/NSE93-A28521
Articles are hosted by Taylor and Francis Online.
A methodology is described that can be used for the extrapolation of thermal-hydraulic phenomena measured in differently scaled integral test facilities to nuclear reactor plant conditions. The use of a system code in this context is confirmed to be of fundamental importance, provided that the code’s scaling capability has been demonstrated. The starting data base for the proposed study consists of the measured quantities and corresponding RELAP5/MOD2 code calculation results related to a boiling water reactor small-break loss-of-coolant accident (SBLOCA) counterpart test activity, a pressurized water reactor (PWR) natural-circulation type test activity, and a PWR SBLOCA counterpart test activity. The proof that this methodology can be used for evaluating uncertainties in predicting transient behavior in nuclear power plants is the main result of this study. Data have been obtained that give a value of the foreseeable error ranges in the provision of plant behavior in the three cases considered.