ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Shigeyasu Sakamoto, Eiping Quang, Glenn F. Knoll
Nuclear Science and Engineering | Volume 109 | Number 2 | October 1991 | Pages 215-220
Technical Note | doi.org/10.13182/NSE91-A28519
Articles are hosted by Taylor and Francis Online.
Neutron capture cross sections for the 197Au(n, γ)198Au reaction have been absolutely determined at neutron energies of 23 and 967 keV. These are the median energies of the two photoneutron sources, Sb-Be and Na-Be, applied in this study. Reaction rates were determined by gamma counting of the 198Au activity using a pair of cylindrical NaI(Tl) detectors. The detection efficiency of the detectors was determined using 4π beta-gamma coincidence counting techniques. The neutron emission rates of the photoneutron sources were determined by indirect comparison with the U.S. National Bureau of Standards NBS-I neutron standard source using the University of Michigan manganese bath. The values obtained for the 197Au(n,γ)198Au cross section are 617.8 ± 11.1 mb and 99.7 ± 2.8 mb at 23 and 967 keV, respectively.