ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
E. Z. Müller
Nuclear Science and Engineering | Volume 109 | Number 2 | October 1991 | Pages 200-214
Technical Note | doi.org/10.13182/NSE91-A28518
Articles are hosted by Taylor and Francis Online.
A one-dimensional method based on a combination of the “nodal equivalence theory” and response matrix homogenization methods was previously described for determining environment-insensitive equivalent few-group diffusion theory parameters for homogenized radial reflector nodes of a pressurized water reactor. This reflector model, called the NGET-RM model, yields equivalent nodal parameters that do not account for the two-dimensional structure of the baffle at core corners; this can lead to significant errors in computed two-dimensional core power distributions. A semi-empirical correction procedure is proposed for reducing the two-dimensional effects associated with this particular one-dimensional reflector model. Numerical two-group experiments are performed for a given reflector configuration (and soluble boron concentration) to determine optimal values for the two empirical factors defined by this model. It is shown that the resultant factors are rather insensitive to core configuration or core conditions and that their application yields improved two-group NGET-RM reflector parameters with which accurate nodal power distributions can be obtained. The results are also compared with those obtained with another one-dimensional environment-insensitive model that has an extra degree of freedom utilized here to reduce two-dimensional effects. Some practical aspects related to the application of the proposed correction procedure are briefly discussed.