ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
E. Z. Müller
Nuclear Science and Engineering | Volume 109 | Number 2 | October 1991 | Pages 200-214
Technical Note | doi.org/10.13182/NSE91-A28518
Articles are hosted by Taylor and Francis Online.
A one-dimensional method based on a combination of the “nodal equivalence theory” and response matrix homogenization methods was previously described for determining environment-insensitive equivalent few-group diffusion theory parameters for homogenized radial reflector nodes of a pressurized water reactor. This reflector model, called the NGET-RM model, yields equivalent nodal parameters that do not account for the two-dimensional structure of the baffle at core corners; this can lead to significant errors in computed two-dimensional core power distributions. A semi-empirical correction procedure is proposed for reducing the two-dimensional effects associated with this particular one-dimensional reflector model. Numerical two-group experiments are performed for a given reflector configuration (and soluble boron concentration) to determine optimal values for the two empirical factors defined by this model. It is shown that the resultant factors are rather insensitive to core configuration or core conditions and that their application yields improved two-group NGET-RM reflector parameters with which accurate nodal power distributions can be obtained. The results are also compared with those obtained with another one-dimensional environment-insensitive model that has an extra degree of freedom utilized here to reduce two-dimensional effects. Some practical aspects related to the application of the proposed correction procedure are briefly discussed.