ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Chonghai Cai, Qingbiao Shen, Yizhong Zhuo
Nuclear Science and Engineering | Volume 109 | Number 2 | October 1991 | Pages 142-149
Technical Paper | doi.org/10.13182/NSE91-A28513
Articles are hosted by Taylor and Francis Online.
The chi-square (χ2) values, which represent the degree of agreement between the calculated total, nonelastic, and differential elastic cross sections and their experimental values, are calculated for seven kinds of optical potentials: the phenomenological optimal optical potential (OOP) for a specific element, the global phenomenological optical potentials given by Becchetti and Greenlees (BGP) and by Varner et al. (CH86) for a large number of target nuclei, and the microscopic optical potentials based on conventional Skyrme force (SII and SIII), generalized Skyrme force (GS2), and modified Skyrme force (SKa). Fourteen natural elements (each containing one to four isotopes) are calculated with 12 to 20 neutron incident energies, which are in the 0.1- to 24-MeV energy region for each element. The calculated average total chi-square values are = 0.309, = 0.807, = 0.684 = 0.600, = 0.646, = 2.587, and = 1–368. The conclusion is that the microscopic optical potential based on generalized and modified Skyrme force (GS2 and SKa), which has an analytical formalism without any free parameters, is useful in nuclear data calculation and evaluation.