ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Beyond conventional boundaries: Innovative construction technologies pave the way for advanced reactor deployment
In a bid to tackle the primary obstacle in nuclear deployment—construction costs—those in industry and government are moving away from traditional methods and embracing innovative construction technologies.
H. Märten, A. Ruben, D. Seeliger
Nuclear Science and Engineering | Volume 109 | Number 2 | October 1991 | Pages 120-127
Technical Paper | doi.org/10.13182/NSE91-A28511
Articles are hosted by Taylor and Francis Online.
A phenomenological scission point model including temperature-dependent shell effects is used to solve the energy partition problem as a function of mass asymmetry (A1/A2) for plutonium fission. Relevant fragment data such as average excitation energy and total kinetic energy are used as the basis for applying a temperature distribution model based on the Madland-Nix theory that includes the full mass number dependence of spectra, a realistic temperature distribution of fragments, a modified center-of-mass (CMS) spectrum ansatz, CMS anisotropy of neutron emission, and competition of neutron and gamma-ray emission. This new model describes neutron multiplicity, energy, and angular distribution of prompt fission neutrons. Calculated data for 238Pu, 240Pu, and 242Pu spontaneous fission are presented and discussed in comparison with experimental data.