ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
D. W. Wootan, J. A. Rawlins, L. L. Carter, H. R. Brager, R. E. Schenter
Nuclear Science and Engineering | Volume 103 | Number 2 | October 1989 | Pages 150-156
Technical Paper | doi.org/10.13182/NSE89-A28503
Articles are hosted by Taylor and Francis Online.
A cobalt test assembly containing yttrium hydride pins for neutron moderation was irradiated in the Fast Flux Test Facility (FFTF) during cycle 9A for 137.7 equivalent full-power days at a power level of 291 MW. The 36 test pins consisted of a batch of 32 pins containing cobalt metal used to produce 60Co and a set of four pins with europium oxide to produce 153Gd, a radioisotope used in detection of the bone disease osteoporosis. Postirradiation examination of the cobalt pins determined the 60Co production to be predictable to an accuracy of ∼5 %. The measured 60Co spatially distributed concentrations were within 20% of the calculated concentrations. The assembly average 60Co measured activity was 4% less than the calculated value. The europium oxide pins were gamma scanned for the europium isotopes 152Eu and 154Eu to an absolute accuracy of -10%. The measured europium radioisotope and I53Gd concentrations were within 20% of calculated values. The hydride assembly performed well and is an excellent vehicle for many FFTF isotope production applications. The results also demonstrate the accuracy of the calculational methods developed by the Westinghouse Hanford Company for predicting isotope production rates in this type of assembly.