ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Ehsan U. Khan
Nuclear Science and Engineering | Volume 61 | Number 1 | September 1976 | Pages 112-115
Technical Note | doi.org/10.13182/NSE76-A28467
Articles are hosted by Taylor and Francis Online.
The relative importance of energy redistribution by thermal conduction and sweep flow mixing in a wire-wrapped fuel assembly are quantitatively described at various Reynolds numbers. For a given bundle geometry, a critical Reynolds number exists below which thermal conduction appears to govern the temperature distribution within the bundle. As the thermal conduction effects become progressively important at low Reynolds numbers, the transverse temperature gradient in the bundle decreases. This result would have an important effect on incoherency in assembly voiding. If one were to develop a model of a full-size liquid-metal fast breeder reactor bundle to study incoherency in voiding, an important parameter is the maximum temperature difference at the bundle exit. Whereas this parameter is the same for a 19- and 217-pin bundle at design operating conditions, it is significantly different at low Reynolds numbers. This low Reynolds number bundle-size effect was determined by analysis of steady-state data and is valid for very slow transients where the thermal inertia of the structure is unimportant. Inclusion of the structure thermal inertia would tend to diminish this bundle-size effect.