ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
John R. Travis, Francis H. Harlow, Anthony A. Amsden
Nuclear Science and Engineering | Volume 61 | Number 1 | September 1976 | Pages 1-10
Technical Paper | doi.org/10.13182/NSE76-A28455
Articles are hosted by Taylor and Francis Online.
The theoretical study of time-varying two-phase flow problems in several space dimensions introduces such a complicated set of coupled nonlinear partial differential equations that numerical solution procedures for a high-speed computer are required in almost all but the simplest examples. Efficient attainment of realistic solutions for practical problems requires a finite difference formulation that is simultaneously implicit in the treatment of mass convection, equations-of-state, and the momentum coupling between phases. We describe such a method, discuss the equations on which it is based, and illustrate its properties by means of examples. In particular, we emphasize the capability for calculating physical instabilities and other time-varying dynamics, at the same time avoiding numerical instability. The computer code is applicable to problems in reactor safety analysis, the dynamics of fluidized dust beds, raindrops or aerosol transport, and a variety of similar circumstances, including the effects of phase transitions and the release of latent heat or chemical energy.