ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
P. L. Arnsberger, M. Mazumdar
Nuclear Science and Engineering | Volume 47 | Number 1 | January 1972 | Pages 140-149
Technical paper | doi.org/10.13182/NSE72-A28427
Articles are hosted by Taylor and Francis Online.
In thermal hydraulic design of nuclear reactor cores it is of interest to know the probability for 0, 1, 2, . . D hot channels and/or cladding and fuel hot spots [i.e., channels (spots) in the core at which temperature limits are exceeded]. Furthermore, it might even be advantageous to design a core for a maximum permissible number of such hot channels (spots) by comparing the safety considerations with the plant efficiency. Numerical procedures available in the open literature using statistical methods are currently restricted to the evaluation of hot channel or hot spot factors corresponding to the requirement that either the most exposed nominal channel (spot) or all channels (spots) in the entire core do not exceed imposed temperature or heat flux limits. This paper describes a method, hereafter referred to as “Method of Correlated Temperatures,” which enables an evaluation to be made of the entire probability distribution of the number of hot channels as a function of the corresponding hot channel factor. A quantitative comparison is performed between the proposed method and other procedures currently in use by applying the different methods to a hot channel factor analysis of a simplified hypothetical LMFBR-type core.