ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
C. R. Richey, T. J. Oakes
Nuclear Science and Engineering | Volume 47 | Number 1 | January 1972 | Pages 40-58
Technical paper | doi.org/10.13182/NSE72-A28419
Articles are hosted by Taylor and Francis Online.
The High Temperature Lattice Test Reactor (HTLTR) is a unique critical facility specifically built for studying reactor lattices at temperatures up to 1000°C. A description of the reactor is given and the unpoisoned technique for determining as measured by the unpoisoned method and the well known Physical Constants Testing Reactor null reactivity method method are given for a natural UO2-2.2 wt% PuO2 (8% 240Pu) graphite lattice and for a UO2 (97.42 wt% 233U)-232ThO2-C fuel element in a graphite array. Experimental values for the neutron multiplication factor have been determined as a function of temperature using the HTLTR for a graphite moderated lattice fueled with a 235UC2 -232ThO2 -C fuel mixture. These results provide valuable check points for testing computational methods currently being applied in the design of high temperature gas cooled reactors.