ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
J. Devooght, C. Smidts
Nuclear Science and Engineering | Volume 112 | Number 2 | October 1992 | Pages 101-113
Technical Paper | doi.org/10.13182/NSE92-A28407
Articles are hosted by Taylor and Francis Online.
During an accident, components fail or evolve within operating states because of operator actions. Physical variables such as pressure and temperature vary, and alarms appear and disappear. Operators diagnose the situation and effect countermeasures to recover the accidental sequence in due time. A mathematical modeling of the complex interaction process that takes place between the operating crew and the reactor during an accident is proposed. This modeling derives from a generalization of the theory of continuous event trees developed for hardware systems to a mixture of human and hardware systems. Such a generalization requires extension of the evolution equations built under the Markovian assumption to semi-Markovian processes because dead times as well as nonexponential distributions must be modeled. Operator and reactor states have transitions due to their own evolution (dQ00, dQRR) or to their mutual influence (dQ0R, dQR0). The correspondence between the estimates yielded by current human reliability models and the transition rates required as input data by the model is given. This model should be seen as a mold in which most existing human reliability models fit.