ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
Y. Naito, M. Maekawa, K. Shibuya
Nuclear Science and Engineering | Volume 58 | Number 2 | October 1975 | Pages 182-192
Technical Paper | doi.org/10.13182/NSE75-A28221
Articles are hosted by Taylor and Francis Online.
A new iterative method is proposed for solving the three-dimensional neutron diffusion equation. This method reduces the discretization error in the calculation of neutron leakage from a subregion. In addition, when only one fine-mesh point is located in each subregion, this method becomes the same as a fine-mesh finite-difference approximation method. Therefore, it is easy to compare the results of this method with those of a fine-mesh difference approximation. The computer code for this method can be used for calculating both the collapsed neutron flux and fine-mesh difference approximations. The conditions for the convergence of this iterative technique are introduced as a function of the neutron leakage.