ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Princeton-led team develops AI for fusion plasma monitoring
A new AI software tool for monitoring and controlling the plasma inside nuclear fuel systems has been developed by an international collaboration of scientists from Princeton University, Princeton Plasma Physics Laboratory (PPPL), Chung-Ang University, Columbia University, and Seoul National University. The software, which the researchers call Diag2Diag, is described in the paper, “Multimodal super-resolution: discovering hidden physics and its application to fusion plasmas,” published in Nature Communications.
Y. Naito, M. Maekawa, K. Shibuya
Nuclear Science and Engineering | Volume 58 | Number 2 | October 1975 | Pages 182-192
Technical Paper | doi.org/10.13182/NSE75-A28221
Articles are hosted by Taylor and Francis Online.
A new iterative method is proposed for solving the three-dimensional neutron diffusion equation. This method reduces the discretization error in the calculation of neutron leakage from a subregion. In addition, when only one fine-mesh point is located in each subregion, this method becomes the same as a fine-mesh finite-difference approximation method. Therefore, it is easy to compare the results of this method with those of a fine-mesh difference approximation. The computer code for this method can be used for calculating both the collapsed neutron flux and fine-mesh difference approximations. The conditions for the convergence of this iterative technique are introduced as a function of the neutron leakage.